Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
N Biotechnol ; 78: 13-21, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-37730172

RESUMEN

Analysis of circulating cell-free DNA (ccfDNA) isolated from liquid biopsies is rapidly being implemented into clinical practice. However, diagnostic accuracy is significantly impacted by sample quality and standardised approaches for assessing the quality of ccfDNA are not yet established. In this study we evaluated the application of nucleic acid "spike-in" control materials to aid quality control (QC) and standardisation of cfDNA isolation for use in in vitro diagnostic assays. We describe an approach for the design and characterisation of in-process QC materials, illustrating it with a spike-in material containing an exogenous Arabidopsis sequence and DNA fragments approximating to ccfDNA and genomic DNA lengths. Protocols for inclusion of the spike-in material in plasma ccfDNA extraction and quantification of its recovery by digital PCR (dPCR) were assessed for their suitability for process QC in an inter-laboratory study between five expert laboratories, using a range of blood collection devices and ccfDNA extraction methods. The results successfully demonstrated that spiking plasmid-derived material into plasma did not deleteriously interfere with endogenous ccfDNA recovery. The approach performed consistently across a range of commonly-used extraction protocols and was able to highlight differences in efficiency and variability between the methods, with the dPCR quantification assay performing with good repeatability (generally CV <5%). We conclude that initial findings demonstrate that this approach appears "fit for purpose" and spike-in recovery can be combined with other extraction QC metrics for monitoring the performance of a process over time, or in the context of external quality assessment.


Asunto(s)
Ácidos Nucleicos Libres de Células , Ácidos Nucleicos Libres de Células/análisis , Biopsia Líquida/métodos , Control de Calidad , ADN , Reacción en Cadena de la Polimerasa/métodos
2.
N Biotechnol ; 72: 97-106, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36202346

RESUMEN

Cerebrospinal fluid (CSF) is a source of diagnostic biomarkers for a range of neurological conditions. Cell-free DNA (cfDNA) is detected in CSF and differences in the concentration of cell-free mitochondrial DNA have been reported in studies of neurodegenerative disorders including Alzheimer's disease (AD). However, the influence of pre-analytical steps has not been investigated for cfDNA in CSF and there is no standardised approach for quantification of total cfDNA (copies of nuclear genome or mitochondria-derived gene targets). In this study, the suitability of four extraction methods was evaluated: QIAamp Circulating Nucleic Acid (Qiagen), Quick-cfDNA Serum & Plasma (Zymo), NucleoSnap® DNA Plasma (Macherey-Nagel) and Plasma/Serum Circulating DNA Purification Mini (Norgen) kits, for cfDNA extraction from CSF of controls and AD dementia patients, utilising a spike-in control for extraction efficiency and fragment size. One of the optimal extraction methods was applied to a comparison of cfDNA concentrations in CSF from control subjects, AD dementia and primary and secondary brain tumour patients. Extraction efficiency based on spike-in recovery was similar in all three groups whilst both endogenous mitochondrial and nucleus-derived cfDNA was significantly higher in CSF from cancer patients compared to control and AD groups, which typically contained < 100 genome copies/mL. This study shows that it is feasible to measure low concentration nuclear and mitochondrial gene targets in CSF and that normalisation of extraction yield can help control pre-analytical variability influencing biomarker measurements.


Asunto(s)
Enfermedad de Alzheimer , Neoplasias Encefálicas , Ácidos Nucleicos Libres de Células , Humanos , Enfermedad de Alzheimer/diagnóstico , Biomarcadores
3.
Methods ; 201: 65-73, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33812016

RESUMEN

A candidate digital PCR (dPCR)-based reference measurement procedure for quantification of human cytomegalovirus (hCMV) was evaluated in 10 viral load comparison schemes (seven external quality assessment (EQA) and three additional training schemes) organized by INSTAND e.V. over four years (between September 2014 and March 2018). Four metrology institutes participated in these schemes using the same extraction method and dPCR measurement procedure for the hCMV specific target sequence of UL54 gene. The calibration independent reference measurement procedure results from the metrology institutes were compared to the results of the clinical diagnostic laboratories applying hCMV qPCR measurement procedures calibrated to reference materials. While the criteria for the acceptable deviation from the target value interval for INSTAND's EQA schemes is from -0.8 log10 to +0.8 log10, the majority of dPCR results were between -0.2 log10 to +0.2 log10. Only 4 out of 45 results exceeded this interval with the maximum deviation of -0.542 log10. In the training schemes containing samples with lower hCMV concentrations, more than half of the results deviated less than ±0.2 log10 from the target value, while more than 95% deviated less than ±0.4 log10 from the target value. Evaluation of intra- and inter-laboratory variation of dPCR results confirmed high reproducibility and trueness of the method. This work demonstrates that dPCR has the potential to act as a calibration independent reference measurement procedure for the value assignment of hCMV calibration and reference materials to support qPCR calibration as well as ultimately for routine hCMV load testing.


Asunto(s)
Citomegalovirus , Calibración , Citomegalovirus/genética , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados
4.
Lancet Microbe ; 2(6): e267-e275, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34100007

RESUMEN

BACKGROUND: Haematopoietic stem cells expressing the CD34 surface marker have been posited as a niche for Mycobacterium tuberculosis complex bacilli during latent tuberculosis infection. Our aim was to determine whether M tuberculosis complex DNA is detectable in CD34-positive peripheral blood mononuclear cells (PBMCs) isolated from asymptomatic adults living in a setting with a high tuberculosis burden. METHODS: We did a cross-sectional study in Ethiopia between Nov 22, 2017, and Jan 10, 2019. Digital PCR (dPCR) was used to determine whether M tuberculosis complex DNA was detectable in PBMCs isolated from 100 mL blood taken from asymptomatic adults with HIV infection or a history of recent household or occupational exposure to an index case of human or bovine tuberculosis. Participants were recruited from HIV clinics, tuberculosis clinics, and cattle farms in and around Addis Ababa. A nested prospective study was done in a subset of HIV-infected individuals to evaluate whether administration of isoniazid preventive therapy was effective in clearing M tuberculosis complex DNA from PBMCs. Follow-up was done between July 20, 2018, and Feb 13, 2019. QuantiFERON-TB Gold assays were also done on all baseline and follow-up samples. FINDINGS: Valid dPCR data (ie, droplet counts >10 000 per well) were available for paired CD34-positive and CD34-negative PBMC fractions from 197 (70%) of 284 participants who contributed data to cross-sectional analyses. M tuberculosis complex DNA was detected in PBMCs of 156 of 197 participants with valid dPCR data (79%, 95% CI 74-85). It was more commonly present in CD34-positive than in CD34-negative fractions (154 [73%] of 197 vs 46 [23%] of 197; p<0·0001). Prevalence of dPCR-detected M tuberculosis complex DNA did not differ between QuantiFERON-negative and QuantiFERON-positive participants (77 [78%] of 99 vs 79 [81%] of 98; p=0·73), but it was higher in HIV-infected than in HIV-uninfected participants (67 [89%] of 75 vs 89 [73%] of 122, p=0·0065). By contrast, the proportion of QuantiFERON-positive participants was lower in HIV-infected than in HIV-uninfected participants (25 [33%] of 75 vs 73 [60%] of 122; p<0·0001). Administration of isoniazid preventive therapy reduced the prevalence of dPCR-detected M tuberculosis complex DNA from 41 (95%) of 43 HIV-infected individuals at baseline to 23 (53%) of 43 after treatment (p<0·0001), but it did not affect the prevalence of QuantiFERON positivity (17 [40%] of 43 at baseline vs 13 [30%] of 43 after treatment; p=0·13). INTERPRETATION: We report a novel molecular microbiological biomarker of latent tuberculosis infection with properties that are distinct from those of a commercial interferon-γ release assay. Our findings implicate the bone marrow as a niche for M tuberculosis in latently infected individuals. Detection of M tuberculosis complex DNA in PBMCs has potential applications in the diagnosis of latent tuberculosis infection, in monitoring response to preventive therapy, and as an outcome measure in clinical trials of interventions to prevent or treat latent tuberculosis infection. FUNDING: UK Medical Research Council.


Asunto(s)
Infecciones por VIH , Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Estudios Transversales , ADN , Etiopía/epidemiología , Infecciones por VIH/tratamiento farmacológico , Humanos , Isoniazida/farmacología , Tuberculosis Latente/diagnóstico , Leucocitos Mononucleares , Mycobacterium tuberculosis/genética , Estudios Prospectivos , Prueba de Tuberculina , Tuberculosis/diagnóstico
5.
Clin Chem ; 64(9): 1296-1307, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29903874

RESUMEN

BACKGROUND: Genetic testing of tumor tissue and circulating cell-free DNA for somatic variants guides patient treatment of many cancers. Such measurements will be fundamental in the future support of precision medicine. However, there are currently no primary reference measurement procedures available for nucleic acid quantification that would support translation of tests for circulating tumor DNA into routine use. METHODS: We assessed the accuracy of digital PCR (dPCR) for copy number quantification of a frequently occurring single-nucleotide variant in colorectal cancer (KRAS c.35G>A, p.Gly12Asp, from hereon termed G12D) by evaluating potential sources of uncertainty that influence dPCR measurement. RESULTS: Concentration values for samples of KRAS G12D and wild-type plasmid templates varied by <1.2-fold when measured using 5 different assays with varying detection chemistry (hydrolysis, scorpion probes, and intercalating dyes) and <1.3-fold with 4 commercial dPCR platforms. Measurement trueness of a selected dPCR assay and platform was validated by comparison with an orthogonal method (inductively coupled plasma mass spectrometry). The candidate dPCR reference measurement procedure showed linear quantification over a wide range of copies per reaction and high repeatability and interlaboratory reproducibility (CV, 2%-8% and 5%-10%, respectively). CONCLUSIONS: This work validates dPCR as an SI-traceable reference measurement procedure based on enumeration and demonstrates how it can be applied for assignment of copy number concentration and fractional abundance values to DNA reference materials in an aqueous solution. High-accuracy measurements using dPCR will support the implementation and traceable standardization of molecular diagnostic procedures needed for advancements in precision medicine.


Asunto(s)
Reacción en Cadena de la Polimerasa/métodos , Medicina de Precisión , Variaciones en el Número de Copia de ADN , Humanos , Espectrometría de Masas , Reproducibilidad de los Resultados
6.
PLoS One ; 13(3): e0194630, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29547634

RESUMEN

INTRODUCTION: Detection and monitoring of circulating tumor DNA (ctDNA) is rapidly becoming a diagnostic, prognostic and predictive tool in cancer patient care. A growing number of gene targets have been identified as diagnostic or actionable, requiring the development of reliable technology that provides analysis of multiple genes in parallel. We have developed the InVision™ liquid biopsy platform which utilizes enhanced TAm-Seq™ (eTAm-Seq™) technology, an amplicon-based next generation sequencing method for the identification of clinically-relevant somatic alterations at low frequency in ctDNA across a panel of 35 cancer-related genes. MATERIALS AND METHODS: We present analytical validation of the eTAm-Seq technology across two laboratories to determine the reproducibility of mutation identification. We assess the quantitative performance of eTAm-Seq technology for analysis of single nucleotide variants in clinically-relevant genes as compared to digital PCR (dPCR), using both established DNA standards and novel full-process control material. RESULTS: The assay detected mutant alleles down to 0.02% AF, with high per-base specificity of 99.9997%. Across two laboratories, analysis of samples with optimal amount of DNA detected 94% mutations at 0.25%-0.33% allele fraction (AF), with 90% of mutations detected for samples with lower amounts of input DNA. CONCLUSIONS: These studies demonstrate that eTAm-Seq technology is a robust and reproducible technology for the identification and quantification of somatic mutations in circulating tumor DNA, and support its use in clinical applications for precision medicine.


Asunto(s)
Biomarcadores de Tumor/análisis , Ácidos Nucleicos Libres de Células/análisis , Análisis Mutacional de ADN/métodos , Mutación , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/patología , Adulto , Alelos , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/análisis , ADN de Neoplasias/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Biopsia Líquida/métodos , Masculino , Células Neoplásicas Circulantes/química , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Anal Bioanal Chem ; 409(10): 2601-2614, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28124757

RESUMEN

Quantitative PCR (qPCR) is an important tool in pathogen detection. However, the use of different qPCR components, calibration materials and DNA extraction methods reduces comparability between laboratories, which can result in false diagnosis and discrepancies in patient care. The wider establishment of a metrological framework for nucleic acid tests could improve the degree of standardisation of pathogen detection and the quantification methods applied in the clinical context. To achieve this, accurate methods need to be developed and implemented as reference measurement procedures, and to facilitate characterisation of suitable certified reference materials. Digital PCR (dPCR) has already been used for pathogen quantification by analysing nucleic acids. Although dPCR has the potential to provide robust and accurate quantification of nucleic acids, further assessment of its actual performance characteristics is needed before it can be implemented in a metrological framework, and to allow adequate estimation of measurement uncertainties. Here, four laboratories demonstrated reproducibility (expanded measurement uncertainties below 15%) of dPCR for quantification of DNA from human cytomegalovirus, with no calibration to a common reference material. Using whole-virus material and extracted DNA, an intermediate precision (coefficients of variation below 25%) between three consecutive experiments was noted. Furthermore, discrepancies in estimated mean DNA copy number concentrations between laboratories were less than twofold, with DNA extraction as the main source of variability. These data demonstrate that dPCR offers a repeatable and reproducible method for quantification of viral DNA, and due to its satisfactory performance should be considered as candidate for reference methods for implementation in a metrological framework.


Asunto(s)
Infecciones por Citomegalovirus/diagnóstico , Citomegalovirus/genética , ADN Viral/análisis , Ensayos de Aptitud de Laboratorios/normas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Citomegalovirus/aislamiento & purificación , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , ADN Viral/genética , Humanos , Reproducibilidad de los Resultados
8.
Anal Chem ; 89(3): 1724-1733, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-27935690

RESUMEN

This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ADN/química , ADN/metabolismo , Humanos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
9.
Biomol Detect Quantif ; 10: 31-33, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27990347

RESUMEN

Digital PCR (dPCR) has been reported to be more precise and sensitive than real-time quantitative PCR (qPCR) in a variety of models and applications. However, in the majority of commercially available dPCR platforms, the dynamic range is dependent on the number of partitions analysed and so is typically limited to four orders of magnitude; reduced compared with the typical seven orders achievable by qPCR. Using two different biological models (HIV DNA analysis and KRAS genotyping), we have demonstrated that the RainDrop Digital PCR System (RainDance Technologies) is capable of performing accurate and precise quantification over six orders of magnitude thereby approaching that achievable by qPCR.

10.
BMC Infect Dis ; 16: 366, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27487852

RESUMEN

BACKGROUND: Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. METHODS: To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. RESULTS: dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. CONCLUSIONS: TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.


Asunto(s)
ADN Bacteriano/aislamiento & purificación , Mycobacterium tuberculosis/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Tuberculosis Pulmonar/diagnóstico , Adulto , Femenino , Humanos , Masculino , Microscopía , Técnicas de Diagnóstico Molecular , Patología Molecular , Sensibilidad y Especificidad
11.
Anal Chem ; 87(7): 3706-13, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25646934

RESUMEN

Digital PCR (dPCR) offers absolute quantification through the limiting dilution of template nucleic acid molecules and has the potential to offer high reproducibility. However, the robustness of dPCR has yet to be evaluated using complex genomes to compare different dPCR methods and platforms. We used DNA templates from the pathogen Mycobacterium tuberculosis to evaluate the impact of template type, master mixes, primer pairs and, crucially, extraction methods on dPCR performance. Performance was compared between the chip (BioMark) and droplet (QX100) formats. In the absence of any external calibration, dPCR measurements were generally consistent within ∼2-fold between different master mixes and primers. Template DNA integrity could influence dPCR performance: high molecular weight gDNA resulted in underperformance of one master mix, while restriction digestion of a low molecular weight sample also caused underestimation. Good concordance (≤1.5-fold difference) was observed between chip and droplet formats. Platform precision was in agreement with predicted Poisson error based on partition number, but this was a minor component (<10%) of the total variance when extraction was included. dPCR offers a robust reproducible method for DNA measurement; however, as a predominant source of error, the process of DNA extraction will need to be controlled with suitable calibrators to maximize agreement between laboratories.


Asunto(s)
ADN Bacteriano/análisis , Infecciones por Mycobacterium/microbiología , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Reacción en Cadena de la Polimerasa/métodos , Animales , ADN Bacteriano/genética , Humanos , Plásmidos/genética , Reproducibilidad de los Resultados
12.
Anal Bioanal Chem ; 406(26): 6499-512, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24853859

RESUMEN

Circulating cell-free DNA (cfDNA) is becoming an important clinical analyte for prenatal testing, cancer diagnosis and cancer monitoring. The extraction stage is critical in ensuring clinical sensitivity of analytical methods measuring minority nucleic acid fractions, such as foetal-derived sequences in predominantly maternal cfDNA. Consequently, quality controls are required for measurement of extraction efficiency, fragment size bias and yield for validation of cfDNA methods. We evaluated the utility of an external DNA spike for monitoring these parameters in a study comparing three specific cfDNA extraction methods [QIAamp circulating nucleic acid (CNA) kit, NucleoSpin Plasma XS (NS) kit and FitAmp plasma/serum DNA isolation (FA) kit] with the commonly used QIAamp DNA blood mini (DBM) kit. We found that the extraction efficiencies of the kits ranked in the order CNA kit > DBM kit > NS kit > FA kit, and the CNA and NS kits gave a better representation of smaller DNA fragments in the extract than the DBM kit. We investigated means of improved reporting of cfDNA yield by comparing quantitative PCR measurements of seven different reference gene assays in plasma samples and validating these with digital PCR. We noted that the cfDNA quantities based on measurement of some target genes (e.g. TERT) were, on average, more than twofold higher than those of other assays (e.g. ERV3). We conclude that analysis and averaging of multiple reference genes using a GeNorm approach gives a more reliable estimate of total cfDNA quantity.


Asunto(s)
ADN/sangre , ADN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Femenino , Humanos , Persona de Mediana Edad , Juego de Reactivos para Diagnóstico/normas , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estándares de Referencia , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...